Finding the Lines

  • histogram 이용
  • 코드
import numpy as np
import matplotlib.image as mpimg
import matplotlib.pyplot as plt

# Load our image
# `mpimg.imread` will load .jpg as 0-255, so normalize back to 0-1
img = mpimg.imread('warped_example.jpg')/255

def hist(img):
    # TO-DO: Grab only the bottom half of the image
    # Lane lines are likely to be mostly vertical nearest to the car
    bottom_half = img[img.shape[0]//2:, :]

    # TO-DO: Sum across image pixels vertically - make sure to set `axis`
    # i.e. the highest areas of vertical lines should be larger values
    histogram = np.sum(bottom_half, axis=0)

    return histogram

# Create histogram of image binary activations
histogram = hist(img)

# Visualize the resulting histogram
plt.plot(histogram)

Implement Sliding Windows and Fit a Polynomial

  • 코드
import numpy as np
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import cv2

# Load our image
binary_warped = mpimg.imread('warped_example.jpg')

def find_lane_pixels(binary_warped):
    # Take a histogram of the bottom half of the image
    histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
    # Create an output image to draw on and visualize the result
    out_img = np.dstack((binary_warped, binary_warped, binary_warped))
    # Find the peak of the left and right halves of the histogram
    # These will be the starting point for the left and right lines
    midpoint = np.int(histogram.shape[0]//2)
    leftx_base = np.argmax(histogram[:midpoint])
    rightx_base = np.argmax(histogram[midpoint:]) + midpoint

    # HYPERPARAMETERS
    # Choose the number of sliding windows
    nwindows = 9
    # Set the width of the windows +/- margin
    margin = 100
    # Set minimum number of pixels found to recenter window
    minpix = 50

    # Set height of windows - based on nwindows above and image shape
    window_height = np.int(binary_warped.shape[0]//nwindows)
    # Identify the x and y positions of all nonzero pixels in the image
    nonzero = binary_warped.nonzero()
    nonzeroy = np.array(nonzero[0])
    nonzerox = np.array(nonzero[1])
    # Current positions to be updated later for each window in nwindows
    leftx_current = leftx_base
    rightx_current = rightx_base

    # Create empty lists to receive left and right lane pixel indices
    left_lane_inds = []
    right_lane_inds = []

    # Step through the windows one by one
    for window in range(nwindows):
        # Identify window boundaries in x and y (and right and left)
        win_y_low = binary_warped.shape[0] - (window+1)*window_height
        win_y_high = binary_warped.shape[0] - window*window_height
        win_xleft_low = leftx_current - margin  # Update this
        win_xleft_high = leftx_current + margin  # Update this
        win_xright_low = rightx_current - margin  # Update this
        win_xright_high = rightx_current + margin  # Update this

        # Draw the windows on the visualization image
        cv2.rectangle(out_img,(win_xleft_low,win_y_low),
        (win_xleft_high,win_y_high),(0,255,0), 2) 
        cv2.rectangle(out_img,(win_xright_low,win_y_low),
        (win_xright_high,win_y_high),(0,255,0), 2) 

        # Identify the nonzero pixels in x and y within the window #
        arr1 = nonzeroy >= win_y_low
        arr2 = nonzerox >= win_xleft_low
        print('arr1:', arr1)
        print('arr2:', arr2)
        good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy <= win_y_high) & 
        (nonzerox >= win_xleft_low) &  (nonzerox <= win_xleft_high)).nonzero()[0]
        good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy <= win_y_high) & 
        (nonzerox >= win_xright_low) &  (nonzerox <= win_xright_high)).nonzero()[0]

        # Append these indices to the lists
        left_lane_inds.append(good_left_inds)
        right_lane_inds.append(good_right_inds)

        # If you found > minpix pixels, recenter next window on their mean position
        if len(good_left_inds) > minpix:
            leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
        if len(good_right_inds) > minpix:        
            rightx_current = np.int(np.mean(nonzerox[good_right_inds]))

    # Concatenate the arrays of indices (previously was a list of lists of pixels)
    try:
        left_lane_inds = np.concatenate(left_lane_inds)
        right_lane_inds = np.concatenate(right_lane_inds)
    except ValueError:
        # Avoids an error if the above is not implemented fully
        pass

    # Extract left and right line pixel positions
    leftx = nonzerox[left_lane_inds]
    lefty = nonzeroy[left_lane_inds] 
    rightx = nonzerox[right_lane_inds]
    righty = nonzeroy[right_lane_inds]

    return leftx, lefty, rightx, righty, out_img


def fit_polynomial(binary_warped):
    # Find our lane pixels first
    leftx, lefty, rightx, righty, out_img = find_lane_pixels(binary_warped)

    # Fit a second order polynomial to each using `np.polyfit`
    left_fit = np.polyfit(lefty, leftx, 2)
    right_fit = np.polyfit(righty, rightx, 2)

    # Generate x and y values for plotting
    ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
    try:
        left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
        right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
    except TypeError:
        # Avoids an error if `left` and `right_fit` are still none or incorrect
        print('The function failed to fit a line!')
        left_fitx = 1*ploty**2 + 1*ploty
        right_fitx = 1*ploty**2 + 1*ploty

    ## Visualization ##
    # Colors in the left and right lane regions
    out_img[lefty, leftx] = [255, 0, 0]
    out_img[righty, rightx] = [0, 0, 255]

    # Plots the left and right polynomials on the lane lines
    plt.plot(left_fitx, ploty, color='yellow')
    plt.plot(right_fitx, ploty, color='yellow')

    return out_img


out_img = fit_polynomial(binary_warped)

Skip the sliding windows step once you've found the lines

import cv2
import numpy as np
import matplotlib.image as mpimg
import matplotlib.pyplot as plt

# Load our image - this should be a new frame since last time!
binary_warped = mpimg.imread('warped_example.jpg')

# Polynomial fit values from the previous frame
# Make sure to grab the actual values from the previous step in your project!
left_fit = np.array([ 2.13935315e-04, -3.77507980e-01,  4.76902175e+02])
right_fit = np.array([4.17622148e-04, -4.93848953e-01,  1.11806170e+03])

def fit_poly(img_shape, leftx, lefty, rightx, righty):
    ### TO-DO: Fit a second order polynomial to each with np.polyfit() ###
    left_fit = np.polyfit(lefty, leftx, 2)
    right_fit = np.polyfit(righty, rightx, 2)
    # Generate x and y values for plotting
    ploty = np.linspace(0, img_shape[0]-1, img_shape[0])
    ### TO-DO: Calc both polynomials using ploty, left_fit and right_fit ###
    left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
    right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]

    return left_fitx, right_fitx, ploty

def search_around_poly(binary_warped):
    # HYPERPARAMETER
    # Choose the width of the margin around the previous polynomial to search
    # The quiz grader expects 100 here, but feel free to tune on your own!
    margin = 100

    # Grab activated pixels
    nonzero = binary_warped.nonzero()
    nonzeroy = np.array(nonzero[0])
    nonzerox = np.array(nonzero[1])

    ### TO-DO: Set the area of search based on activated x-values ###
    ### within the +/- margin of our polynomial function ###
    ### Hint: consider the window areas for the similarly named variables ###
    ### in the previous quiz, but change the windows to our new search area ###
    y = nonzeroy
    left_lane_inds = ((nonzerox > (left_fit[0]*y**2 + left_fit[1]*y + left_fit[2] - margin)) & 
        (nonzerox < (left_fit[0]*y**2 + left_fit[1]*y + left_fit[2] + margin)))
    right_lane_inds = ((nonzerox > (right_fit[0]*y**2 + right_fit[1]*y + right_fit[2] - margin)) &
        (nonzerox < (right_fit[0]*y**2 + right_fit[1]*y + right_fit[2] + margin)))

    # Again, extract left and right line pixel positions
    leftx = nonzerox[left_lane_inds]
    lefty = nonzeroy[left_lane_inds] 
    rightx = nonzerox[right_lane_inds]
    righty = nonzeroy[right_lane_inds]

    # Fit new polynomials
    left_fitx, right_fitx, ploty = fit_poly(binary_warped.shape, leftx, lefty, rightx, righty)

    ## Visualization ##
    # Create an image to draw on and an image to show the selection window
    out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
    window_img = np.zeros_like(out_img)
    # Color in left and right line pixels
    out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
    out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]

    # Generate a polygon to illustrate the search window area
    # And recast the x and y points into usable format for cv2.fillPoly()
    left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])
    left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, 
                              ploty])))])
    left_line_pts = np.hstack((left_line_window1, left_line_window2))
    right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])
    right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, 
                              ploty])))])
    right_line_pts = np.hstack((right_line_window1, right_line_window2))

    # Draw the lane onto the warped blank image
    cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
    cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
    result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)

    # Plot the polynomial lines onto the image
    plt.plot(left_fitx, ploty, color='yellow')
    plt.plot(right_fitx, ploty, color='yellow')
    ## End visualization steps ##

    return result

# Run image through the pipeline
# Note that in your project, you'll also want to feed in the previous fits
result = search_around_poly(binary_warped)

# View your output
plt.imshow(result)

Another Sliding Window Search Approach

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import glob
import cv2

# Read in a thresholded image
warped = mpimg.imread('warped_example.jpg')
# window settings
window_width = 50 
window_height = 80 # Break image into 9 vertical layers since image height is 720
margin = 100 # How much to slide left and right for searching

def window_mask(width, height, img_ref, center,level):
    output = np.zeros_like(img_ref)
    output[int(img_ref.shape[0]-(level+1)*height):int(img_ref.shape[0]-level*height),max(0,int(center-width/2)):min(int(center+width/2),img_ref.shape[1])] = 1
    return output

def find_window_centroids(image, window_width, window_height, margin):

    window_centroids = [] # Store the (left,right) window centroid positions per level
    window = np.ones(window_width) # Create our window template that we will use for convolutions

    # First find the two starting positions for the left and right lane by using np.sum to get the vertical image slice
    # and then np.convolve the vertical image slice with the window template 

    # Sum quarter bottom of image to get slice, could use a different ratio
    l_sum = np.sum(image[int(3*image.shape[0]/4):,:int(image.shape[1]/2)], axis=0)
    l_center = np.argmax(np.convolve(window,l_sum))-window_width/2
    r_sum = np.sum(image[int(3*image.shape[0]/4):,int(image.shape[1]/2):], axis=0)
    r_center = np.argmax(np.convolve(window,r_sum))-window_width/2+int(image.shape[1]/2)

    # Add what we found for the first layer
    window_centroids.append((l_center,r_center))

    # Go through each layer looking for max pixel locations
    for level in range(1,(int)(image.shape[0]/window_height)):
        # convolve the window into the vertical slice of the image
        image_layer = np.sum(image[int(image.shape[0]-(level+1)*window_height):int(image.shape[0]-level*window_height),:], axis=0)
        conv_signal = np.convolve(window, image_layer)
        # Find the best left centroid by using past left center as a reference
        # Use window_width/2 as offset because convolution signal reference is at right side of window, not center of window
        offset = window_width/2
        l_min_index = int(max(l_center+offset-margin,0))
        l_max_index = int(min(l_center+offset+margin,image.shape[1]))
        l_center = np.argmax(conv_signal[l_min_index:l_max_index])+l_min_index-offset
        # Find the best right centroid by using past right center as a reference
        r_min_index = int(max(r_center+offset-margin,0))
        r_max_index = int(min(r_center+offset+margin,image.shape[1]))
        r_center = np.argmax(conv_signal[r_min_index:r_max_index])+r_min_index-offset
        # Add what we found for that layer
        window_centroids.append((l_center,r_center))

    return window_centroids

window_centroids = find_window_centroids(warped, window_width, window_height, margin)

# If we found any window centers
if len(window_centroids) > 0:

    # Points used to draw all the left and right windows
    l_points = np.zeros_like(warped)
    r_points = np.zeros_like(warped)

    # Go through each level and draw the windows     
    for level in range(0,len(window_centroids)):
        # Window_mask is a function to draw window areas
        l_mask = window_mask(window_width,window_height,warped,window_centroids[level][0],level)
        r_mask = window_mask(window_width,window_height,warped,window_centroids[level][1],level)
        # Add graphic points from window mask here to total pixels found 
        l_points[(l_points == 255) | ((l_mask == 1) ) ] = 255
        r_points[(r_points == 255) | ((r_mask == 1) ) ] = 255

    # Draw the results
    template = np.array(r_points+l_points,np.uint8) # add both left and right window pixels together
    zero_channel = np.zeros_like(template) # create a zero color channel
    template = np.array(cv2.merge((zero_channel,template,zero_channel)),np.uint8) # make window pixels green
    warpage= np.dstack((warped, warped, warped))*255 # making the original road pixels 3 color channels
    output = cv2.addWeighted(warpage, 1, template, 0.5, 0.0) # overlay the orignal road image with window results

# If no window centers found, just display orginal road image
else:
    output = np.array(cv2.merge((warped,warped,warped)),np.uint8)

# Display the final results
plt.imshow(output)
plt.title('window fitting results')
plt.show()

results matching ""

    No results matching ""